An In-solution Ultrasonication-assisted Digestion Method for Improved Extracellular Matrix Proteome Coverage
Epithelial cell behavior is coordinated by the composition of the surrounding extracellular matrix (ECM); thus ECM protein identification is critical for understanding normal biology and disease states. Proteomic analyses of ECM proteins have been hindered by the insoluble and digestion-resistant na...
Saved in:
Published in: | Molecular & cellular proteomics Vol. 8; no. 7; pp. 1648 - 1657 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-07-2009
American Society for Biochemistry and Molecular Biology The American Society for Biochemistry and Molecular Biology |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Epithelial cell behavior is coordinated by the composition of the surrounding extracellular matrix (ECM); thus ECM protein identification is critical for understanding normal biology and disease states. Proteomic analyses of ECM proteins have been hindered by the insoluble and digestion-resistant nature of ECM. Here we explore the utility of combining rapid ultrasonication- and surfactant-assisted digestion for the detailed proteomics analysis of ECM samples. When compared with traditional overnight digestion, this optimized method dramatically improved the sequence coverage for collagen I, revealed the presence of hundreds of previously unidentified proteins in Matrigel, and identified a protein profile for ECM isolated from rat mammary glands that was substantially different from that found in Matrigel. In a three-dimensional culture assay to investigate epithelial cell-ECM interactions, mammary epithelial cells were found to undergo extensive branching morphogenesis when plated with mammary gland-derived matrix in comparison with Matrigel. Cumulatively these data highlight the tissue-specific nature of ECM composition and function and underscore the need for optimized techniques, such as those described here, for the proteomics characterization of ECM samples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Undefined-2 |
ISSN: | 1535-9476 1535-9484 |
DOI: | 10.1074/mcp.M900039-MCP200 |