Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater

The presence of traces of heavy metals in wastewater causes adverse health effects on humans and the ecosystem. Adsorption is a low cost and eco-friendly method for the removal of low concentrations of heavy metals from wastewater streams. Over the past several years, graphene-based materials have b...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Vol. 10; no. 3; p. 595
Main Authors: Abu-Nada, Abdulrahman, McKay, Gordon, Abdala, Ahmed
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 24-03-2020
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presence of traces of heavy metals in wastewater causes adverse health effects on humans and the ecosystem. Adsorption is a low cost and eco-friendly method for the removal of low concentrations of heavy metals from wastewater streams. Over the past several years, graphene-based materials have been researched as exceptional adsorbents. In this review, the applications of graphene oxide (GO), reduce graphene oxide (rGO), and graphene-based nanocomposites (GNCs) for the removal of various metals are analyzed. Firstly, the common synthesis routes for GO, rGO, and GNCs are discussed. Secondly, the available literature on the adsorption of heavy metals including arsenic, lead, cadmium, nickel, mercury, chromium and copper using graphene-based materials are reviewed and analyzed. The adsorption isotherms, kinetics, capacity, and removal efficiency for each metal on different graphene materials, as well as the effects of the synthesis method and the adsorption process conditions on the recyclability of the graphene materials, are discussed. Finally, future perspectives and trends in the field are also highlighted.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10030595