Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)–Mass Spectrometry[S]

Profiling of body fluids is crucial for monitoring and discovering metabolic markers of health and disease and for providing insights into human physiology. Since human urine and plasma each contain an extreme diversity of metabolites, a single liquid chromatographic system when coupled to mass spec...

Full description

Saved in:
Bibliographic Details
Published in:Molecular & cellular proteomics Vol. 14; no. 6; pp. 1684 - 1695
Main Authors: Contrepois, Kévin, Jiang, Lihua, Snyder, Michael
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-06-2015
The American Society for Biochemistry and Molecular Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Profiling of body fluids is crucial for monitoring and discovering metabolic markers of health and disease and for providing insights into human physiology. Since human urine and plasma each contain an extreme diversity of metabolites, a single liquid chromatographic system when coupled to mass spectrometry (MS) is not sufficient to achieve reasonable metabolome coverage. Hydrophilic interaction liquid chromatography (HILIC) offers complementary information to reverse-phase liquid chromatography (RPLC) by retaining polar metabolites. With the objective of finding the optimal combined chromatographic solution to profile urine and plasma, we systematically investigated the performance of five HILIC columns with different chemistries operated at three different pH (acidic, neutral, basic) and five C18-silica RPLC columns. The zwitterionic column ZIC-HILIC operated at neutral pH provided optimal performance on a large set of hydrophilic metabolites. The RPLC columns Hypersil GOLD and Zorbax SB aq were proven to be best suited for the metabolic profiling of urine and plasma, respectively. Importantly, the optimized HILIC-MS method showed excellent intrabatch peak area reproducibility (CV < 12%) and good long-term interbatch (40 days) peak area reproducibility (CV < 22%) that were similar to those of RPLC-MS procedures. Finally, combining the optimal HILIC- and RPLC-MS approaches greatly expanded metabolome coverage with 44% and 108% new metabolic features detected compared with RPLC-MS alone for urine and plasma, respectively. The proposed combined LC-MS approaches improve the comprehensiveness of global metabolic profiling of body fluids and thus are valuable for monitoring and discovering metabolic changes associated with health and disease in clinical research studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-9476
1535-9484
DOI:10.1074/mcp.M114.046508