Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates
Background Post-operative cardiac complications occur infrequently but contribute to mortality after liver transplantation (LT). Artificial intelligence-based algorithms based on electrocardiogram (AI-ECG) are attractive for use during pre-operative evaluation to screen for risk of post-operative ca...
Saved in:
Published in: | Digestive diseases and sciences Vol. 68; no. 6; pp. 2379 - 2388 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-06-2023
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Post-operative cardiac complications occur infrequently but contribute to mortality after liver transplantation (LT). Artificial intelligence-based algorithms based on electrocardiogram (AI-ECG) are attractive for use during pre-operative evaluation to screen for risk of post-operative cardiac complications, but their use for this purpose is unknown.
Aims
The aim of this study was to evaluate the performance of an AI-ECG algorithm in predicting cardiac factors such as asymptomatic left ventricular systolic dysfunction or potential for developing post-operative atrial fibrillation (AF) in cohorts of patients with end-stage liver disease either undergoing evaluation for transplant or receiving a liver transplant.
Methods
A retrospective study was performed in two consecutive adult cohorts of patients who were either evaluated for LT or underwent LT at a single center between 2017 and 2019. ECG were analyzed using an AI-ECG trained to recognize patterns from a standard 12-lead ECG which could identify the presence of left ventricular systolic dysfunction (LVEF < 50%) or subsequent atrial fibrillation.
Results
The performance of AI-ECG in patients undergoing LT evaluation is similar to that in a general population but was lower in the presence of prolonged QTc. AI-ECG analysis on ECG in sinus rhythm had an AUROC of 0.69 for prediction of de novo post-transplant AF. Although post-transplant cardiac dysfunction occurred in only 2.3% of patients in the study cohorts, AI-ECG had an AUROC of 0.69 for prediction of subsequent low left ventricular ejection fraction.
Conclusions
A positive screen for low EF or AF on AI-ECG can alert to risk of post-operative cardiac dysfunction or predict new onset atrial fibrillation after LT. The use of an AI-ECG can be a useful adjunct in persons undergoing transplant evaluation that can be readily implemented in clinical practice.
Graphical Abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0163-2116 1573-2568 |
DOI: | 10.1007/s10620-023-07928-y |