Application of infrared matrix-assisted laser desorption electrospray ionization mass spectrometry for morphine imaging in brain tissue
Here, we present a method developed for the analysis of spatial distributions of morphine in mouse brain tissue using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to a Q Exactive Plus mass spectrometer. The method is also capable of evaluating spatial distri...
Saved in:
Published in: | Analytical and bioanalytical chemistry Vol. 415; no. 23; pp. 5809 - 5817 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-09-2023
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, we present a method developed for the analysis of spatial distributions of morphine in mouse brain tissue using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to a Q Exactive Plus mass spectrometer. The method is also capable of evaluating spatial distributions of the antiretroviral drug abacavir. To maximize sensitivity to morphine, we analyze various Orbitrap mass spectrometry acquisition modes utilizing signal abundance and frequency of detection as evaluation criteria. We demonstrate detection of morphine in mouse brain and establish that the selected ion monitoring mode provides 2.5 times higher sensitivity than the full-scan mode. We find that distributions of morphine and abacavir are highly correlated with the Pearson correlation coefficient
R
= 0.87. Calibration showed that instrument response is linear up to 40 pg/mm
2
(3.8 μg/g of tissue).
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-023-04861-x |