Increased methamphetamine‐induced locomotor activity and behavioral sensitization in histamine‐deficient mice

We have recently suggested that the brain histamine has an inhibitory role on the behavioral effects of methamphetamine by pharmacological studies. In this study, we used the histidine decarboxylase gene knockout mice and measured the spontaneous locomotor activity, the changes of locomotion by sing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry Vol. 83; no. 4; pp. 837 - 845
Main Authors: Kubota, Yasuhiko, Ito, Chihiro, Sakurai, Eiichi, Sakurai, Eiko, Watanabe, Takehiko, Ohtsu, Hiroshi
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Science Ltd 01-11-2002
Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have recently suggested that the brain histamine has an inhibitory role on the behavioral effects of methamphetamine by pharmacological studies. In this study, we used the histidine decarboxylase gene knockout mice and measured the spontaneous locomotor activity, the changes of locomotion by single and repeated administrations of methamphetamine, and the contents of brain monoamines and amino acids at 1 h after a single administration of methamphetamine. In the histidine decarboxylase gene knockout mice, spontaneous locomotor activity during the dark period was significantly lower than in the wild‐type mice. Interestingly, methamphetamine‐induced locomotor hyperactivity and behavioral sensitization were facilitated more in the histidine decarboxylase gene knockout mice. In the neurochemical study, noradrenaline and O‐phosphoserine were decreased in the midbrain of the saline‐treated histidine decarboxylase gene knockout mice. On the other hand, single administration of methamphetamine decreased GABA content of the midbrain of the wild‐type mice, but did not alter that of histidine decarboxylase gene knockout mice. These results suggest that the histamine neuron system plays a role as an awakening amine in concert with the noradrenaline neuron system, whereas it has an inhibitory role on the behavioral effects of methamphetamine through the interaction with the GABAergic neuron system.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-3042
1471-4159
DOI:10.1046/j.1471-4159.2002.01189.x