Patient‐specific calibration of cone‐beam computed tomography data sets for radiotherapy dose calculations and treatment plan assessment

Purpose In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient‐specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration proce...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied clinical medical physics Vol. 19; no. 2; pp. 249 - 257
Main Authors: MacFarlane, Michael, Wong, Daniel, Hoover, Douglas A., Wong, Eugene, Johnson, Carol, Battista, Jerry J., Chen, Jeff Z.
Format: Journal Article
Language:English
Published: United States John Wiley & Sons, Inc 01-03-2018
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient‐specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. Methods Instead of mapping the CT numbers voxel‐by‐voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least‐squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head‐and‐neck cancer patients, each having routine CBCTs and a middle‐of‐treatment re‐planning CT (reCT). The original treatment plan was re‐calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel‐to‐voxel DIR, density‐overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose‐volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. Results Compared with the gold standard using reCT, the average dose metric differences were ≤ 1.1% for all three methods (PSC: −0.3%; DIR: −0.7%; density‐override: −1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density‐override: 94.4%). Conclusions An automated patient‐specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re‐planning CT for head‐and‐neck patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.12293