A universal null-distribution for topological data analysis
One of the most elusive challenges within the area of topological data analysis is understanding the distribution of persistence diagrams arising from data. Despite much effort and its many successful applications, this is largely an open problem. We present a surprising discovery: normalized proper...
Saved in:
Published in: | Scientific reports Vol. 13; no. 1; p. 12274 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
28-07-2023
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most elusive challenges within the area of topological data analysis is understanding the distribution of persistence diagrams arising from data. Despite much effort and its many successful applications, this is largely an open problem. We present a surprising discovery: normalized properly, persistence diagrams arising from random point-clouds obey a universal probability law. Our statements are based on extensive experimentation on both simulated and real data, covering point-clouds with vastly different geometry, topology, and probability distributions. Our results also include an explicit well-known distribution as a candidate for the universal law. We demonstrate the power of these new discoveries by proposing a new hypothesis testing framework for computing significance values for individual topological features within persistence diagrams, providing a new quantitative way to assess the significance of structure in data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-37842-2 |