Synthesis, characterization and protective efficiency of novel polybenzoxazine precursor as an anticorrosive coating for mild steel

In this study, 2-[(E)-(hexylimino)methyl] phenol (SA-Hex-SF) was synthesized by adding salicylaldehyde (SA) and n-hexylamine (Hex-NH 2 ), which was subsequently reduced by sodium borohydride to produce 2-[(hexylamino)methyl] phenol (SA-Hex-NH). Finally, the SA-Hex-NH reacted with formaldehyde to giv...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 13; no. 1; p. 5581
Main Authors: Soliman, Ahmed M. M., Aly, Kamal I., Mohamed, Mohamed Gamal, Amer, Amer A., Belal, Mostafa R., Abdel-Hakim, Mohamed
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 05-04-2023
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, 2-[(E)-(hexylimino)methyl] phenol (SA-Hex-SF) was synthesized by adding salicylaldehyde (SA) and n-hexylamine (Hex-NH 2 ), which was subsequently reduced by sodium borohydride to produce 2-[(hexylamino)methyl] phenol (SA-Hex-NH). Finally, the SA-Hex-NH reacted with formaldehyde to give a benzoxazine monomer (SA-Hex-BZ). Then, the monomer was thermally polymerized at 210 °C to produce the poly(SA-Hex-BZ). The chemical composition of SA-Hex-BZ was examined using FT-IR, 1 H, and 13 C NMR spectroscopy. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray Diffraction (XRD), respectively, were used to examine the thermal behavior, surface morphology, and crystallinity of the SA-Hex-BZ and its PBZ polymer. Mild steel (MS) was coated by poly(SA-Hex-BZ) which was quickly prepared using spray coating and thermal curing techniques (MS). Finally, the electrochemical tests were used to evaluate the poly(SA-Hex-BZ)-coating on MS as anti-corrosion capabilities. According to this study, the poly(SA-Hex-BZ) coating was hydrophobic, and corrosion efficiency reached 91.7%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-30364-x