Pathogenesis of Velogenic Genotype VII.1.1 Newcastle Disease Virus Isolated from Chicken in Egypt via Different Inoculation Routes: Molecular, Histopathological, and Immunohistochemical Study

Newcastle disease virus (NDV) remains a constant threat to the poultry industry. There is scarce information concerning the pathogenicity and genetic characteristics of the circulating velogenic Newcastle disease virus (NDV) in Egypt. In the present work, NDV was screened from tracheal swabs collect...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) Vol. 11; no. 12; p. 3567
Main Authors: El-Morshidy, Yassmin, Abdo, Walied, Elmahallawy, Ehab Kotb, Abd El-Dayem, Ghada Allam, El-Sawak, Ahmed, El-Habashi, Nagwan, Mosad, Samah M, Lokman, Maha S, Albrakati, Ashraf, Abou Asa, Samah
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 15-12-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Newcastle disease virus (NDV) remains a constant threat to the poultry industry. There is scarce information concerning the pathogenicity and genetic characteristics of the circulating velogenic Newcastle disease virus (NDV) in Egypt. In the present work, NDV was screened from tracheal swabs collected from several broiler chicken farms ( = 12) in Dakahlia Governorate, Egypt. Real-time reverse transcriptase polymerase chain reaction (RRT-PCR) was used for screening of velogenic and mesogenic NDV strains through targeting F gene fragment amplification, followed by sequencing of the resulting PCR products. The identified strain, namely, NDV-CH-EGYPT-F42-DAKAHLIA-2019, was isolated and titrated in the allantoic cavity of 10 day old specific pathogen-free (SPF) embryonated chicken eggs (ECEs), and then their virulence was determined by mean death time (MDT) and intracerebral pathogenicity index (ICPI). The pathogenicity of the identified velogenic NDV strain was also assessed in 28 day old chickens using different inoculation routes as follows: intraocular, choanal slit, intranasal routes, and a combination of both intranasal and intraocular routes. In addition, sera were collected 5 and 10 days post inoculation (pi) for the detection of NDV antibodies by hemagglutination inhibition test (HI), and tissue samples from different organs were collected for histopathological and immunohistochemical examination. A series of different clinical signs and postmortem lesions were recorded with the various routes. Interestingly, histopathology and immunohistochemistry for NDV nucleoprotein displayed widespread systemic distribution. The intensity of viral nucleoprotein immunolabeling was detected within different cells including the epithelial and endothelium lining, as well as macrophages. The onset, distribution, and severity of the observed lesions were remarkably different between various inoculation routes. Collectively, a time-course comparative pathogenesis study of NDV infection demonstrated the role of different routes in the pathogenicity of NDV. The intranasal challenge was associated with a prominent increase in NDV lesions, whereas the choanal slit route was the route least accompanied by severe NDV pathological findings. Clearly, the present findings might be helpful for implementation of proper vaccination strategies against NDV.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-2615
2076-2615
DOI:10.3390/ani11123567