Stretchable chiral pockets for palladium-catalyzed highly chemo- and enantioselective allenylation

Pyrazolones are a vital class of heterocycles possessing various biological properties and much attention is paid to the diversified synthesis of enantiopure pyrazolone derivatives. We describe here the development of diphenylphosphinoalkanoic acid based chiral bisphosphine ligands, which are succes...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 12; no. 1; p. 2416
Main Authors: Zhang, Yuchen, Zhang, Xue, Ma, Shengming
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 23-04-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pyrazolones are a vital class of heterocycles possessing various biological properties and much attention is paid to the diversified synthesis of enantiopure pyrazolone derivatives. We describe here the development of diphenylphosphinoalkanoic acid based chiral bisphosphine ligands, which are successfully applied to the palladium-catalyzed asymmetric allenylation of racemic pyrazol-5-ones. The reaction affords C-allenylation products, optically active pyrazol-5-ones bearing an allene unit, in high chemo- and enantioselectivity, with DACH-ZYC-Phos-C1 as the best ligand. The synthetic potential of the C-allenylation products is demonstrated. Furthermore, the enantioselectivity observed with DACH-ZYC-Phos-C1 is rationalized by density functional theory studies. Chiral pyrazolone derivatives show promising biological activity in commercial drugs. Here, the authors report an enantioselective allenylation of pyrazolones by fine tuning of Trost’s ligands, which leads to a chiral pocket featuring high efficiency and asymmetric induction in the catalytic process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22498-1