propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis

In the life sciences, many assays measure only the relative abundances of components in each sample. Such data, called compositional data, require special treatment to avoid misleading conclusions. Awareness of the need for caution in analyzing compositional data is growing, including the understand...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 7; no. 1; p. 16252
Main Authors: Quinn, Thomas P., Richardson, Mark F., Lovell, David, Crowley, Tamsyn M.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 24-11-2017
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the life sciences, many assays measure only the relative abundances of components in each sample. Such data, called compositional data, require special treatment to avoid misleading conclusions. Awareness of the need for caution in analyzing compositional data is growing, including the understanding that correlation is not appropriate for relative data. Recently, researchers have proposed proportionality as a valid alternative to correlation for calculating pairwise association in relative data. Although the question of how to best measure proportionality remains open, we present here a computationally efficient R package that implements three measures of proportionality. In an effort to advance the understanding and application of proportionality analysis, we review the mathematics behind proportionality, demonstrate its application to genomic data, and discuss some ongoing challenges in the analysis of relative abundance data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-16520-0