NFκB activation in differentiating glioblastoma stem-like cells is promoted by hyaluronic acid signaling through TLR4

We have previously described that the NFκB pathway is upregulated during differentiation of glioblastoma stem-like cells (GSCs) which keeps differentiating GSCs in a proliferative astrocytic precursor state. However, extracellular signals and cellular mediators of this pathway are not clear yet. Her...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 8; no. 1; pp. 6341 - 10
Main Authors: Ferrandez, Eva, Gutierrez, Olga, Segundo, David San, Fernandez-Luna, Jose L.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 20-04-2018
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have previously described that the NFκB pathway is upregulated during differentiation of glioblastoma stem-like cells (GSCs) which keeps differentiating GSCs in a proliferative astrocytic precursor state. However, extracellular signals and cellular mediators of this pathway are not clear yet. Here, we show that TLR4 is a key factor to promote NFκB activation in differentiating GSCs. TLR4 is upregulated during differentiation of GSCs and promotes transcriptional activation of NFκB as determined by luciferase-reporter assays and expression of NFκB target genes. Downregulation of TLR4 by shRNAs or blockade with anti-TLR4 specific antibodies drastically inhibited NFκB activity which promoted further differentiation and reduced proliferation of GSCs. We found that hyaluronic acid (HA), a main component of brain extracellular matrix, triggers the TLR4-NFκB pathway in differentiating GSCs. Moreover, HA is synthesized and released by GSCs undergoing differentiation and leads to transcriptional activation of NFκB, which is inhibited following downregulation of TLR4 or blockade of HA synthesis. Thus, we have demonstrated that during the process of differentiation, GSCs upregulate TLR4 and release the TLR4 ligand HA, which activates the TLR4-NFκB signaling pathway. This strategy may efficiently be used by differentiating GSCs to maintain their proliferative potential and consequently their tumorigenic capacity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-24444-6