Soil carbon sequestration accelerated by restoration of grassland biodiversity
Agriculturally degraded and abandoned lands can remove atmospheric CO 2 and sequester it as soil organic matter during natural succession. However, this process may be slow, requiring a century or longer to re-attain pre-agricultural soil carbon levels. Here, we find that restoration of late-success...
Saved in:
Published in: | Nature communications Vol. 10; no. 1; p. 718 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
12-02-2019
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Agriculturally degraded and abandoned lands can remove atmospheric CO
2
and sequester it as soil organic matter during natural succession. However, this process may be slow, requiring a century or longer to re-attain pre-agricultural soil carbon levels. Here, we find that restoration of late-successional grassland plant diversity leads to accelerating annual carbon storage rates that, by the second period (years 13–22), are 200% greater in our highest diversity treatment than during succession at this site, and 70% greater than in monocultures. The higher soil carbon storage rates of the second period (years 13–22) are associated with the greater aboveground production and root biomass of this period, and with the presence of multiple species, especially C4 grasses and legumes. Our results suggest that restoration of high plant diversity may greatly increase carbon capture and storage rates on degraded and abandoned agricultural lands.
Abandoned and degraded agricultural lands undergo ecological succession that sequesters atmospheric CO
2
as soil carbon, but at low rates. Here the authors show that restoration of high plant diversity provides a greenhouse gas benefit by greatly increasing the rate of soil carbon sequestration on such lands. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-08636-w |