Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features
Phase change materials have attracted significant attention due to their promising applications in many fields like solar energy and chip cooling. However, they suffer leakage during the phase transition process and have relatively low thermal conductivity. Here, through introducing hard magnetic pa...
Saved in:
Published in: | Nature communications Vol. 13; no. 1; p. 1397 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
16-03-2022
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phase change materials have attracted significant attention due to their promising applications in many fields like solar energy and chip cooling. However, they suffer leakage during the phase transition process and have relatively low thermal conductivity. Here, through introducing hard magnetic particles, we synthesize a kind of magnetically tightened form-stable phase change materials. They achieve multifunctions such as leakage-proof, dynamic assembly, and morphological reconfiguration, presenting superior high thermal (increasing of 1400–1600%) and electrical (>10
4
S/m) conductivity, and prominent compressive strength, respectively. Furthermore, free-standing temperature control and high-performance thermal and electric conversion systems based on these materials are developed. This work suggests an efficient way toward exploiting a smart phase change material for thermal management of electronics and low-grade waste heat utilization.
Despite phase change materials’ promising properties for thermal management, their application can be hindered by challenges regarding leakage and low thermal conduction. Here, authors report PCMs with embedded magnetic particles displaying zero leakage and morphological reconfiguration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-29090-1 |