Earliest evidence of marine habitat use by mammals

Evidence for the earliest invasion of the marine realm by mammals was previously restricted to Eocene (48.6–37.8 Ma) skeletal remains. We report incontrovertible ichnofossil evidence for brackish-water habitat use by at least two mammalian species in southern Wyoming during the late Paleocene (58 Ma...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 11; no. 1; p. 8846
Main Authors: Wroblewski, Anton F.-J., Gulas-Wroblewski, Bonnie E.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 13-05-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evidence for the earliest invasion of the marine realm by mammals was previously restricted to Eocene (48.6–37.8 Ma) skeletal remains. We report incontrovertible ichnofossil evidence for brackish-water habitat use by at least two mammalian species in southern Wyoming during the late Paleocene (58 Ma). These are the first Paleocene mammal trackways recorded in the United States and only the fourth documented in the world. Multiple tracks preserved in restricted marine deposits represent animals repeatedly walking across submerged to partially emergent tidal flats. Hundreds of tracks are preserved in planform and cross-sectional exposure within five horizons along a 1032 m tracksite. Four prints exhibit five clear toe imprints, while two others distinctly display four toes. Some tracks penetrate beds populated by dwelling traces of marine bivalves and polychaetes in the upper layers and sea anemones at the base. Candidates for the five-toed tracemakers are pantodonts such as Titanoides , Barylambda , and Coryphodon , which have been recovered from late Paleocene strata throughout western North America. The four-toed tracks provide the earliest evidence of previously-undescribed large artiodactyls and/or tapiroids, mutually supporting recent molecular phylogenetic studies that place the origin of Cetartiodactyla near the Cretaceous-Paleogene boundary (~ 67.7 Ma). Collectively, these trackways irrefutably demonstrate the utility of ichnological data in reconstructing the evolutionary history and adaptive behaviors of extinct taxa beyond the evidence provided by body fossils alone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-88412-3