Cortex segmentation: a fast variational geometric approach
An automatic cortical gray matter segmentation from a three-dimensional (3-D) brain images [magnetic resonance (MR) or computed tomography] is a well known problem in medical image processing. In this paper, we first formulate it as a geometric variational problem for propagation of two coupled boun...
Saved in:
Published in: | IEEE transactions on medical imaging Vol. 21; no. 12; pp. 1544 - 1551 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-12-2002
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An automatic cortical gray matter segmentation from a three-dimensional (3-D) brain images [magnetic resonance (MR) or computed tomography] is a well known problem in medical image processing. In this paper, we first formulate it as a geometric variational problem for propagation of two coupled bounding surfaces. An efficient numerical scheme is then used to implement the geodesic active surface model. Experimental results of cortex segmentation on real 3-D MR data are provided. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2002.806594 |