Culling corallivores improves short-term coral recovery under bleaching scenarios

Management of coral predators, corallivores, is recommended to improve coral cover on tropical coral reefs under projected increasing levels of accumulated thermal stress, but whether corallivore management can improve coral cover, which is necessary for large-scale operationalisation, remains equiv...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 13; no. 1; p. 2520
Main Authors: Rogers, Jacob G. D., Plagányi, Éva E.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09-05-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Management of coral predators, corallivores, is recommended to improve coral cover on tropical coral reefs under projected increasing levels of accumulated thermal stress, but whether corallivore management can improve coral cover, which is necessary for large-scale operationalisation, remains equivocal. Here, using a multispecies ecosystem model, we investigate intensive management of an invertebrate corallivore, the Crown-of-Thorns Starfish ( Acanthaster cf. solaris ), and show that culling could improve coral cover at sub-reef spatial scales, but efficacy varied substantially within and among reefs. Simulated thermal stress events attenuated management-derived coral cover improvements and was dependent on the level of accumulated thermal stress, the thermal sensitivity of coral communities and the rate of corallivore recruitment at fine spatial scales. Corallivore management was most effective when accumulated thermal stress was low, coral communities were less sensitive to heat stress and in areas of high corallivore recruitment success. Our analysis informs how to manage a pest species to promote coral cover under future thermal stress events. This study uses multispecies modelling to show that the management of a coral predator, the crown-of-thorns starfish, could help corals recover following bleaching events. They show that management was most effective when heat stress severity for corals was low to moderate, when corals had lower heat sensitivity and when the recruitment rate of starfish was high.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30213-x