Highly stable graphene-oxide-based membranes with superior permeability
Increasing fresh water demand for drinking and agriculture is one of the grand challenges of our age. Graphene oxide (GO) membranes have shown a great potential for desalination and water purification. However, it is challenging to further improve the water permeability without sacrificing the separ...
Saved in:
Published in: | Nature communications Vol. 9; no. 1; pp. 1486 - 8 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
16-04-2018
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Increasing fresh water demand for drinking and agriculture is one of the grand challenges of our age. Graphene oxide (GO) membranes have shown a great potential for desalination and water purification. However, it is challenging to further improve the water permeability without sacrificing the separation efficiency, and the GO membranes are easily delaminated in aqueous solutions within few hours. Here, we report a class of reduced GO membranes with enlarged interlayer distance fabricated by using theanine amino acid and tannic acid as reducing agent and cross-linker. Such membranes show water permeance over 10,000 L m
−2
h
−1
bar
−1
, which is 10–1000 times higher than those of previously reported GO-based membranes and commercial membranes, and good separation efficiency, e.g., rhodamine B and methylene blue rejection of ~100%. Moreover, they show no damage or delamination in water, acid, and basic solutions even after months.
Graphene oxide membranes show great potential for water filtering, but improving their performance and stability remains difficult. Here, the authors use theanine amino acid and tannic acid to reduce and cross-link graphene oxide membranes with remarkably high permeability and stability in aqueous solution. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-03919-0 |