In situ inward epitaxial growth of bulk macroporous single crystals

The functionalities of porous materials could be significantly enhanced if the materials themselves were in single-crystal form, which, owing to structural coherence, would reduce electronic and optical scattering effects. However, growing macroporous single crystals remains a fundamental challenge,...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 8; no. 1; pp. 2178 - 8
Main Authors: Chen, Chenlong, Sun, Shujing, Chou, Mitch M. C., Xie, Kui
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19-12-2017
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The functionalities of porous materials could be significantly enhanced if the materials themselves were in single-crystal form, which, owing to structural coherence, would reduce electronic and optical scattering effects. However, growing macroporous single crystals remains a fundamental challenge, let alone manufacturing crystals large enough to be of practical use. Here we demonstrate a straightforward, inexpensive, versatile method for creating macroporous gallium nitride single crystals on a centimetre scale. The synthetic strategy is built upon a disruptive crystal growth mechanism that utilises direct nitridation of a parent LiGaO 2 single crystal rendering an inward epitaxial growth process. Strikingly, the resulting single crystals exhibit electron mobility comparable to that for bulk crystals grown by the conventional sodium flux method. This approach not only affords control of both crystal and pore size through synthetic modification, but proves generic, thus opening up the possibility of designing macroporous crystals in a wealth of other materials. Porous single crystals are desirable for optoelectronic applications, but their fabrication remains challenging. Here the authors produce centimetre-sized macroporous GaN single crystals with electron mobility comparable to that of bulk crystals via in situ inward epitaxial growth on parent LiGaO 2 crystals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-02197-6