Acquiring new memories in neocortex of hippocampal-lesioned mice

The hippocampus interacts with the neocortical network for memory retrieval and consolidation. Here, we found the lateral entorhinal cortex (LEC) modulates learning-induced cortical long-range gamma synchrony (20–40 Hz) in a hippocampal-dependent manner. The long-range gamma synchrony, which was cou...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 13; no. 1; p. 1601
Main Authors: Luo, Wenhan, Yun, Di, Hu, Yi, Tian, Miaomiao, Yang, Jiajun, Xu, Yifan, Tang, Yong, Zhan, Yang, Xie, Hong, Guan, Ji-Song
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 24-03-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hippocampus interacts with the neocortical network for memory retrieval and consolidation. Here, we found the lateral entorhinal cortex (LEC) modulates learning-induced cortical long-range gamma synchrony (20–40 Hz) in a hippocampal-dependent manner. The long-range gamma synchrony, which was coupled to the theta (7–10 Hz) rhythm and enhanced upon learning and recall, was mediated by inter-cortical projections from layer 5 neurons of the LEC to layer 2 neurons of the sensory and association cortices. Artificially induced cortical gamma synchrony across cortical areas improved memory encoding in hippocampal lesioned mice for originally hippocampal-dependent tasks. Mechanistically, we found that activities of cortical c-Fos labeled neurons, which showed egocentric map properties, were modulated by LEC-mediated gamma synchrony during memory recall, implicating a role of cortical synchrony to generate an integrative memory representation from disperse features. Our findings reveal the hippocampal mediated organization of cortical memories and suggest brain-machine interface approaches to improve cognitive function. Hippocampal lesioned mice form new memories. Here, the authors show the lateral entorhinal cortex modulates learning-induced cortical long-range gamma synchrony in a hippocampal-dependent manner and artificially induced cortical gamma synchrony across cortical areas improved memory encoding in hippocampal lesioned mice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29208-5