Co-immunization with two recombinant Eimeria tenella lines expressing immunoprotective antigens of E. maxima elicits enhanced protection against E. maxima infection

Live anticoccidial vaccines have been a tremendous success for disease prevention. The establishment of the reverse genetic manipulation platform has enabled the development of Eimeria parasites, the live anticoccidial vaccine strains, as vaccine vectors. In our previous study, recombinant E. tenell...

Full description

Saved in:
Bibliographic Details
Published in:Parasites & vectors Vol. 12; no. 1; p. 347
Main Authors: Tang, Xinming, Wang, Chaoyue, Liang, Lin, Hu, Dandan, Zhang, Sixin, Duan, Chunhui, Suo, Jingxia, Liu, Xianyong, Suo, Xun, Cui, Shangjin
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 12-07-2019
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Live anticoccidial vaccines have been a tremendous success for disease prevention. The establishment of the reverse genetic manipulation platform has enabled the development of Eimeria parasites, the live anticoccidial vaccine strains, as vaccine vectors. In our previous study, recombinant E. tenella expressing a single immunodominant antigen of E. maxima (Et-EmIMP1) was able to protect chickens against challenge infection with E. maxima. This promising result encouraged us to further explore strategies to improve the protection efficacy of recombinant Eimeria and develop it as a vaccine vector. We constructed a novel recombinant Eimeria line expressing apical membrane antigen 1 of E. maxima (Et-EmAMA1) and then immunized chickens with Et-EmAMA1 and/or Et-EmIMP1. We found that the E. maxima soluble antigen-specific cell-mediated immunity was much stronger in the birds that were co-immunized with Et-EmAMA1 and Et-EmIMP1 than in those that were immunized with Et-EmAMA1 or Et-EmIMP1 alone. The oocyst production after E. maxima infection was significantly reduced in the recombinant Eimeria-immunized birds compared with the wild-type-immunized and naïve birds. The oocyst production in the birds co-immunized with Et-EmAMA1 and Et-EmIMP1 was consistently the lowest among the treatment groups after E. maxima infection. These results demonstrated that Eimeria is an effective vaccine vector that can carry and deliver heterologous Eimeria antigens to the host immune system and trigger specific immune responses. Our results also suggested that increasing the number of recombinant Eimeria lines is an effective approach to enhance protective immunity against infections with heterologous pathogens.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-019-3605-6