Transcriptional Activation of Heat Shock Protein 90 Mediated Via a Proximal Promoter Region as Trigger of Caspofungin Resistance in Aspergillus fumigatus
Invasive aspergillosis is a deadly infection for which new antifungal therapies are needed. Heat shock protein 90 (Hsp90) is an essential chaperone in Aspergillus fumigatus representing an attractive antifungal target. Using a thiamine-repressible promoter (pthiA), we showed that genetic repression...
Saved in:
Published in: | The Journal of infectious diseases Vol. 209; no. 3; pp. 473 - 481 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Oxford University Press
01-02-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Invasive aspergillosis is a deadly infection for which new antifungal therapies are needed. Heat shock protein 90 (Hsp90) is an essential chaperone in Aspergillus fumigatus representing an attractive antifungal target. Using a thiamine-repressible promoter (pthiA), we showed that genetic repression of Hsp90 significantly reduced virulence in a murine model of invasive aspergillosis. Moreover, substituting the A. fumigatus hsp90 promoter with 2 artificial promoters (potef, pthiA) and the Candida albicans hsp90 promoter resulted in hypersensitivity to caspofungin and abolition of the paradoxical effect (resistance at high caspofungin concentrations). By inducing truncations in the hsp90 promoter, we identified a 100-base pair proximal sequence that triggers a significant increase of hsp90 expression (≥1.5-fold) and is essential for the paradoxical effect. Preventing this increase of hsp90 expression was sufficient to abolish the paradoxical effect and therefore optimize the antifungal activity of caspofungin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-1899 1537-6613 |
DOI: | 10.1093/infdis/jit530 |