Image Encryption Scheme Based on Orbital Shift Pixels Shuffling with ILM Chaotic System

Image encryption techniques protect private images from unauthorized access while they are being transmitted. Previously used confusion and diffusion processes are risky and time-consuming. Therefore, finding a solution to this problem has become necessary. In this paper, we propose a new image encr...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 25; no. 5; p. 787
Main Authors: Ali, Wajid, Zhu, Congxu, Latif, Rabia, Asim, Muhammad, Tariq, Muhammad Usman
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 12-05-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Image encryption techniques protect private images from unauthorized access while they are being transmitted. Previously used confusion and diffusion processes are risky and time-consuming. Therefore, finding a solution to this problem has become necessary. In this paper, we propose a new image encryption scheme that combines the Intertwining Logistic Map (ILM) and Orbital Shift Pixels Shuffling Method (OSPSM). The proposed encryption scheme applies a technique for confusion inspired by the rotation of planets around their orbits. We linked the technique of changing the positions of planets around their orbits with the shuffling technique of pixels and combined it with chaotic sequences to disrupt the pixel positions of the plain image. First, randomly selected pixels from the outermost orbit are rotated to shift the pixels in that orbit, causing all pixels in that orbit to change their original position. This process is repeated for each orbit until all pixels have been shifted. This way, all pixels are randomly scrambled on their orbits. Later on, the scrambled pixels are converted into a 1D long vector. The cyclic shuffling is applied using the key generated by the ILM to a 1D long vector and reshaped into a 2D matrix. Then, the scrambled pixels are converted into a 1D long vector to apply cyclic shuffle using the key generated by the ILM. After that, the 1D long vector is converted into a 2D matrix. For the diffusion process, using ILM generates a mask image, which is then XORed with the transformed 2D matrix. Finally, a highly secure and unrecognizable ciphertext image is obtained. Experimental results, simulation analysis, security evaluation, and comparison with existing image encryption schemes show that it has a strong advantage in defending against common attacks, and the operating speed of this encryption scheme also performs excellently in practical image encryption applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e25050787