Enhancement of Activity and Development of Low Pt Content Electrocatalysts for Oxygen Reduction Reaction in Acid Media

Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O2-reduction often proceeds at a less p...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 26; no. 17; p. 5147
Main Authors: Kostuch, Aldona, Rutkowska, Iwona A., Dembinska, Beata, Wadas, Anna, Negro, Enrico, Vezzù, Keti, Di Noto, Vito, Kulesza, Pawel J.
Format: Journal Article
Language:English
Published: Basel MDPI AG 25-08-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O2-reduction often proceeds at a less positive potential, and produces higher amounts of undesirable H2O2-intermediate. Hybrid supports, which utilize metal oxides (e.g., CeO2, WO3, Ta2O5, Nb2O5, and ZrO2), stabilize Pt and carbon nanostructures and diminish their corrosion while exhibiting high activity toward the four-electron (most efficient) reduction in oxygen. Porosity of carbon supports facilitates dispersion and stability of Pt nanoparticles. Alternatively, the Pt-based bi- and multi-metallic catalysts, including PtM alloys or M-core/Pt-shell nanostructures, where M stands for certain transition metals (e.g., Au, Co, Cu, Ni, and Fe), can be considered. The catalytic efficiency depends on geometric (decrease in Pt–Pt bond distances) and electronic (increase in d-electron vacancy in Pt) factors, in addition to possible metal–support interactions and interfacial structural changes affecting adsorption and activation of O2-molecules. Despite the stabilization of carbons, doping with heteroatoms, such as sulfur, nitrogen, phosphorus, and boron results in the formation of catalytically active centers. Thus, the useful catalysts are likely to be multi-component and multi-functional.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Dediacated to Janusz Jurczak on ocassion of His 80th Birthday.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26175147