Unique SARS-CoV protein nsp1: bioinformatics, biochemistry and potential effects on virulence
Viruses have evolved a myriad of strategies for promoting viral replication, survival and spread. Sequence analysis of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) genome predicts several proteins that are unique to SARS-CoV. The search to understand the high virulence of SARS-CoV co...
Saved in:
Published in: | Trends in microbiology (Regular ed.) Vol. 15; no. 2; pp. 51 - 53 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-02-2007
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Viruses have evolved a myriad of strategies for promoting viral replication, survival and spread. Sequence analysis of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) genome predicts several proteins that are unique to SARS-CoV. The search to understand the high virulence of SARS-CoV compared with related coronaviruses, which cause lesser respiratory illnesses, has recently focused on the unique nsp1 protein of SARS-CoV and suggests evolution of a possible new virulence mechanism in coronaviruses. The SARS-CoV nsp1 protein increases cellular RNA degradation and thus might facilitate SARS-CoV replication or block immune responses. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-3 ObjectType-Review-1 |
ISSN: | 0966-842X 1878-4380 |
DOI: | 10.1016/j.tim.2006.12.005 |