All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts
With the increasing importance of wireless microelectronic devices the need for on‐board power supplies is evidently also increasing. Possible candidates for microenergy storage devices are planar all‐solid‐state Li‐ion microbatteries, which are currently under development by several start‐up compan...
Saved in:
Published in: | Advanced energy materials Vol. 1; no. 1; pp. 10 - 33 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
01-01-2011
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the increasing importance of wireless microelectronic devices the need for on‐board power supplies is evidently also increasing. Possible candidates for microenergy storage devices are planar all‐solid‐state Li‐ion microbatteries, which are currently under development by several start‐up companies. However, to increase the energy density of these microbatteries further and to ensure a high power delivery, three‐dimensional (3D) designs are essential. Therefore, several concepts have been proposed for the design of 3D microbatteries and these are reviewed. In addition, an overview is given of the various electrode and electrolyte materials that are suitable for 3D all‐solid‐state microbatteries. Furthermore, methods are presented to produce films of these materials on a nano‐ and microscale.
Three‐dimensional (3D) solid‐state microbatteries are promising for efficient and high energy density storage to power future generations of microelectronic devices. An overview of several 3D microbattery concepts proposed by various research groups is given. Several suitable electrode and electrolyte materials for these batteries are reviewed together with some key deposition methods to produce thin films of these materials. |
---|---|
Bibliography: | istex:01572CB10E6591F7483FC465439CB68EF2F36B73 ark:/67375/WNG-PVGHNZ6C-P ArticleID:AENM201000002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201000002 |