Automatic Diagnosis of Diabetic Retinopathy Stage Focusing Exclusively on Retinal Hemorrhage
Background and Objectives: The present study evaluated the detection of diabetic retinopathy (DR) using an automated fundus camera focusing exclusively on retinal hemorrhage (RH) using a deep convolutional neural network, which is a machine-learning technology. Materials and Methods: This investigat...
Saved in:
Published in: | Medicina (Kaunas, Lithuania) Vol. 58; no. 11; p. 1681 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
20-11-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and Objectives: The present study evaluated the detection of diabetic retinopathy (DR) using an automated fundus camera focusing exclusively on retinal hemorrhage (RH) using a deep convolutional neural network, which is a machine-learning technology. Materials and Methods: This investigation was conducted via a prospective and observational study. The study included 89 fundus ophthalmoscopy images. Seventy images passed an image quality review and were graded as showing no apparent DR (n = 51), mild nonproliferative DR (NPDR; n = 16), moderate NPDR (n = 1), severe NPDR (n = 1), and proliferative DR (n = 1) by three retinal experts according to the International Clinical Diabetic Retinopathy Severity scale. The RH numbers and areas were automatically detected and the results of two tests—the detection of mild-or-worse NPDR and the detection of moderate-or-worse NPDR—were examined. Results: The detection of mild-or-worse DR showed a sensitivity of 0.812 (95% confidence interval: 0.680–0.945), specificity of 0.888, and area under the curve (AUC) of 0.884, whereas the detection of moderate-or-worse DR showed a sensitivity of 1.0, specificity of 1.0, and AUC of 1.0. Conclusions: Automated diagnosis using artificial intelligence focusing exclusively on RH could be used to diagnose DR requiring ophthalmologist intervention. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 1648-9144 1010-660X 1648-9144 |
DOI: | 10.3390/medicina58111681 |