Exploring AuRh Nanoalloys: A Computational Perspective on the Formation and Physical Properties
We studied the formation of AuRh nanoalloys (between 20–150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one‐by‐one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core‐...
Saved in:
Published in: | Chemphyschem Vol. 23; no. 8; pp. e202200035 - n/a |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
20-04-2022
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We studied the formation of AuRh nanoalloys (between 20–150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one‐by‐one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core‐shell ordering over other chemical configurations. We identify new structural motifs with enhanced thermal stabilities. The physical features of those selected systems were studied at the Density Functional Theory (DFT) level, revealing profound correlations between the nanoalloys morphology and properties. Surprisingly, the arrangement of the inner Rh core seems to play a dominant role on nanoclusters’ physical features like the HOMO‐LUMO gap and magnetic moment. Strong charge separations are recovered within the nanoalloys suggesting the existence of charge‐transfer transitions.
The synthesis and physical properties of AuRh nanoalloys, with size range between 20–150 atoms, are studied by means of molecular dynamics and density functional theory calculations. The best synthetic route towards stable nanosystems is reported along with their physical features, which show unique characteristics that have active potential in photocatalytic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1439-4235 1439-7641 1439-7641 |
DOI: | 10.1002/cphc.202200035 |