Water is a preservative of microbes
Summary Water is the cellular milieu, drives all biochemistry within Earth’s biosphere and facilitates microbe‐mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative—its capacity to maintain the long‐term integrity and vi...
Saved in:
Published in: | Microbial biotechnology Vol. 15; no. 1; pp. 191 - 214 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
United States
John Wiley & Sons, Inc
01-01-2022
John Wiley and Sons Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Water is the cellular milieu, drives all biochemistry within Earth’s biosphere and facilitates microbe‐mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative—its capacity to maintain the long‐term integrity and viability of microbial cells—and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation–rehydration, freeze–thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as ‘bound’ water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour‐phase water (at moderate‐to‐high relative humidities) than under more‐arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze–thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar‐rich aqueous milieux and vapour‐phase water according to laboratory‐based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large‐scale release/reactivation of preserved microbes caused by global climate change.
Water acts as a preservative that can to maintain the long‐term integrity and viability of microbial cells, and does this via a variety of mechanisms. Assuming that the components of the cell membrane are chemically stable, or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. Currently, a large‐scale release/reactivation of preserved microbes is being caused by global climate change. |
---|---|
Bibliography: | Funding information Funding was received from a Natural Environment Research Council (NERC) project (Grant No. NE/E016804/1). |
ISSN: | 1751-7915 1751-7915 |
DOI: | 10.1111/1751-7915.13980 |