Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling

Motor imagery-based brain-computer interfaces (MI-BCIs) send commands to a computer using the brain activity registered when a subject imagines—but does not perform—a given movement. However, inconsistent MI-BCI performance occurs in variations of brain signals across subjects and experiments; this...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in human neuroscience Vol. 14; p. 321
Main Authors: Lee, Minji, Yoon, Jae-Geun, Lee, Seong-Whan
Format: Journal Article
Language:English
Published: Lausanne Frontiers Research Foundation 06-08-2020
Frontiers Media S.A
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Motor imagery-based brain-computer interfaces (MI-BCIs) send commands to a computer using the brain activity registered when a subject imagines—but does not perform—a given movement. However, inconsistent MI-BCI performance occurs in variations of brain signals across subjects and experiments; this is considered to be a significant problem in practical BCI. Moreover, some subjects exhibit a phenomenon referred to as “BCI-inefficiency,” in which they are unable to generate brain signals for BCI control. These subjects have significant difficulties in using BCI. The primary goal of this study is to identify the connections of the resting-state network that affect MI performance and predict MI performance using these connections. We used a public database of MI, which includes the results of psychological questionnaires and pre-experimental resting-state taken over two sessions on different days. A dynamic causal model was used to calculate the coupling strengths between brain regions with directionality. Specifically, we investigated the motor network in resting-state, including the dorsolateral prefrontal cortex, which performs motor planning. As a result, we observed a significant difference in the connectivity strength from the supplementary motor area to the right dorsolateral prefrontal cortex between the low- and high-MI performance groups. This coupling, measured in the resting-state, is significantly stronger in the high-MI performance group than the low-MI performance group. The connection strength is positively correlated with MI-BCI performance (Session 1: r = 0.54; Session 2: r = 0.42). We also predicted MI performance using linear regression based on this connection (r-squared = 0.31). The proposed predictors, based on dynamic causal modeling, can develop new strategies for improving BCI performance. These findings can further our understanding of BCI-inefficiency and help BCI users to lower costs and save time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Yu Zhang, Stanford University, United States
This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience
These authors have contributed equally to this work
Reviewed by: Yongtian He, University of Houston, United States; Sangtae Ahn, Kyungpook National University, South Korea; Fabien Lotte, Institut National de Recherche en Informatique et en Automatique (INRIA), France
ISSN:1662-5161
1662-5161
DOI:10.3389/fnhum.2020.00321