Clinical manifestations of VX poisoning following percutaneous exposure in the domestic white pig
Nerve agents are a class of organophosphorus chemicals that inhibit certain cholinesterase enzymes (ChE). If untreated, percutaneous exposure to nerve agents, such as VX (O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate) can cause paralysis, apnoea and death. Much of the information conce...
Saved in:
Published in: | Human & experimental toxicology Vol. 22; no. 5; p. 255 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-05-2003
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nerve agents are a class of organophosphorus chemicals that inhibit certain cholinesterase enzymes (ChE). If untreated, percutaneous exposure to nerve agents, such as VX (O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate) can cause paralysis, apnoea and death. Much of the information concerning the percutaneous absorption and subsequent toxicity of nerve agents has been obtained using various rodent models. However, the most relevant 'skin model' is arguably the pig. Therefore, the purpose of this study was to examine the clinical manifestations of VX intoxication in the domestic white pig following a 2 LD50 (120 microg/kg) percutaneous challenge. There was a consistent onset of signs (where present) in each animal: mastication was followed by miosis, salivation, fasciculations and apnoea. Whilst ChE activity did not correlate with the onset of signs, there was a qualitative relationship in that mastication preceded substantial ChE inhibition, miosis lagged behind the linear decrease in acetylcholinesterase (AChE) activity and fasciculations and apnoea occurred after maximum ChE inhibition had been attained (5-10% of normal). These observations may be of use for the triage of patients exposed to VX. In comparison with similar studies with GD, VX did not affect glucose utilization. However, VX was similar to GD in that it caused a mild hyperkalaemia and hyperphosphataemia, although the significance of this observation was not clear. There was substantial lateral diffusion of the initial droplet of VX over the application site, indicating that, when decontaminating exposed skin, attention should also be directed to areas peripheral to the original site of exposure. |
---|---|
ISSN: | 0960-3271 |
DOI: | 10.1191/0960327103ht359oa |