The bolometric light curves and physical parameters of stripped-envelope supernovae
The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity L p, enabling the construction of a l...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society Vol. 458; no. 3; pp. 2973 - 3002 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Oxford University Press
21-05-2016
Royal Astronomical Society |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity L
p, enabling the construction of a luminosity function. Subsequently, the mass of 56Ni synthesized in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median L
p, in erg s−1, of log(L
p) = 43.00 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median M
Ni = 0.34, 0.16, 0.14, and 0.11 M⊙, respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from L
p/2 to L
p more quickly than SNe Ib/IIb; consequently, their light curves are not as broad. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) |
ISSN: | 0035-8711 1365-2966 1365-2966 |
DOI: | 10.1093/mnras/stw299 |