The "Phagocytic Synapse" and Clearance of Apoptotic Cells

Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology Vol. 8; p. 1708
Main Authors: Barth, Nicole D, Marwick, John A, Vendrell, Marc, Rossi, Adriano G, Dransfield, Ian
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 04-12-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology
Reviewed by: Raymond B. Birge, Rutgers University, The State University of New Jersey, United States; Michael R. Elliott, University of Rochester, United States
Edited by: Kirsten Lauber, Ludwig-Maximilians-Universität München, Germany
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2017.01708