The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation

Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and Progr...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 8; no. 9; p. e75376
Main Authors: Dunlop, Rachael Anne, Cox, Paul Alan, Banack, Sandra Anne, Rodgers, Kenneth John
Format: Journal Article
Language:English
Published: United States Public Library of Science 25-09-2013
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and Progressive Supranuclear Palsy (PSP). Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNA(Ala) with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine (BMAA), can be misincorporated in place of L-serine into human proteins. We also report that this misincorporation can be inhibited by L-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS.
Bibliography:Competing Interests: A patent application relating to the potential of L-serine to be used as a therapeutic agent for the treatment of neurodegenerative diseases has been submitted (PCT/US2012/066373). This patent does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials and there are no consultancies or additional products in development associated with it.
Conceived and designed the experiments: RAD KJR. Performed the experiments: RAD KJR. Analyzed the data: SAB. Contributed reagents/materials/analysis tools: KJR PAC. Wrote the paper: RAD PAC SAB KJR. Supervised the project: KJR PAC.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0075376