Multiscale permutation Rényi entropy and its application for EEG signals
There is considerable interest in analyzing the complexity of electroencephalography (EEG) signals. However, some traditional complexity measure algorithms only quantify the complexities of signals, but cannot discriminate different signals very well. To analyze the complexity of epileptic EEG signa...
Saved in:
Published in: | PloS one Vol. 13; no. 9; p. e0202558 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
04-09-2018
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is considerable interest in analyzing the complexity of electroencephalography (EEG) signals. However, some traditional complexity measure algorithms only quantify the complexities of signals, but cannot discriminate different signals very well. To analyze the complexity of epileptic EEG signals better, a new multiscale permutation Rényi entropy (MPEr) algorithm is proposed. In this algorithm, the coarse-grained procedure is introduced by using weighting-averaging method, and the weighted factors are determined by analyzing nonlinear signals. We apply the new algorithm to analyze epileptic EEG signals. The experimental results show that MPEr algorithm has good performance for discriminating different EEG signals. Compared with permutation Rényi entropy (PEr) and multiscale permutation entropy (MPE), MPEr distinguishes different EEG signals successfully. The proposed MPEr algorithm is effective and has good applications prospects in EEG signals analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0202558 |