Image similarity evaluation of the bulk-density-assigned synthetic CT derived from MRI of intracranial regions for radiation treatment

Various methods for radiation-dose calculation have been investigated over previous decades, focusing on the use of magnetic resonance imaging (MRI) only. The bulk-density-assignment method based on manual segmentation has exhibited promising results compared to dose-calculation with computed tomogr...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 12; no. 9; p. e0185082
Main Authors: Kim, Shin-Wook, Shin, Hun-Joo, Hwang, Jin-Ho, Shin, Jin-Sol, Park, Sung-Kwang, Kim, Jin-Young, Kim, Ki-Jun, Kay, Chul-Seung, Kang, Young-Nam
Format: Journal Article
Language:English
Published: United States Public Library of Science 19-09-2017
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Various methods for radiation-dose calculation have been investigated over previous decades, focusing on the use of magnetic resonance imaging (MRI) only. The bulk-density-assignment method based on manual segmentation has exhibited promising results compared to dose-calculation with computed tomography (CT). However, this method cannot be easily implemented in clinical practice due to its time-consuming nature. Therefore, we investigated an automatic anatomy segmentation method with the intention of providing the proper methodology to evaluate synthetic CT images for a radiation-dose calculation based on MR images. CT images of 20 brain cancer patients were selected, and their MR images including T1-weighted, T2-weighted, and PETRA were retrospectively collected. Eight anatomies of the patients, such as the body, air, eyeball, lens, cavity, ventricle, brainstem, and bone, were segmented for bulk-density-assigned CT image (BCT) generation. In addition, water-equivalent CT images (WCT) with only two anatomies-body and air-were generated for a comparison with BCT. Histogram comparison and gamma analysis were performed by comparison with the original CT images, after the evaluation of automatic segmentation performance with the dice similarity coefficient (DSC), false negative dice (FND) coefficient, and false positive dice (FPD) coefficient. The highest DSC value was 99.34 for air segmentation, and the lowest DSC value was 73.50 for bone segmentation. For lens segmentation, relatively high FND and FPD values were measured. The cavity and bone were measured as over-segmented anatomies having higher FPD values than FND. The measured histogram comparison results of BCT were better than those of WCT in all cases. In gamma analysis, the averaged improvement of BCT compared to WCT was measured. All the measured results of BCT were better than those of WCT. Therefore, the results of this study show that the introduced methods, such as histogram comparison and gamma analysis, are valid for the evaluation of the synthetic CT generation from MR images. The image similarity results showed that BCT has superior results compared to WCT for all measurements performed in this study. Consequently, more accurate radiation treatment for the intracranial regions can be expected when the proper image similarity evaluation introduced in this study is performed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
These authors also contributed equally to this work.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0185082