Signature molecular changes in the skeletal muscle of hindlimb unloaded mice
Hind-limb unloaded (HU) mouse is a well-recognized model of muscle atrophy; however, the molecular changes in the skeletal muscle during unloading are poorly characterized. We have used Raman spectroscopy to evaluate the structure and behavior of signature molecules involved in regulating muscle str...
Saved in:
Published in: | Biochemistry and biophysics reports Vol. 25; p. 100930 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-03-2021
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hind-limb unloaded (HU) mouse is a well-recognized model of muscle atrophy; however, the molecular changes in the skeletal muscle during unloading are poorly characterized. We have used Raman spectroscopy to evaluate the structure and behavior of signature molecules involved in regulating muscle structural and functional health. The Raman spectroscopic analysis of gastrocnemius muscles was compared between 16-18 weeks old HU c57Bl/6J mice and ground-based controls. The spectra showed that the signals for asparagine and glutamine were reduced in HU mice, possibly indicating increased catabolism. The peaks for hydroxyproline and proline were split, pointing towards molecular breakdown and reduced tendon repair. We also report a consistently increased intensity in> 1300 cm-1 range in the Raman spectra along with a shift towards higher frequencies in the HU mice, indicating activation of sarcoplasmic reticulum (SR) stress during HU.
•A thorough understanding of molecular changes underlying muscle detriment in disuse partly remains elusive.•The Raman spectroscopy is applied to characterize the molecular changes in the skeletal muscle of hindlimb unloaded mice.•The conformational changes and the breakdown of the molecular bonds in the skeletal muscle dictates loss of muscle mass.•The therapeutic drugs targeting specific molecules can be designed by identifying the changes in the skeletal muscles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2405-5808 2405-5808 |
DOI: | 10.1016/j.bbrep.2021.100930 |