Physical and 3D Printing Properties of Arrowroot Starch Gels
This paper aims to investigate the physical and 3D printing properties of arrowroot starch (AS), a natural biopolymer with many potential health benefits. Scanning electron microscopy images showed that AS granules had mixed spherical and elongated geometries, with average sizes of 10.5 ± 2.5 μm. Th...
Saved in:
Published in: | Foods Vol. 11; no. 14; p. 2140 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
19-07-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aims to investigate the physical and 3D printing properties of arrowroot starch (AS), a natural biopolymer with many potential health benefits. Scanning electron microscopy images showed that AS granules had mixed spherical and elongated geometries, with average sizes of 10.5 ± 2.5 μm. The molecular weight of AS measured by gel permeation chromatography (GPC) was 3.24 × 107 g/mol, and the amylose/amylopectin ratio of AS was approximately 4:11. AS has an A-type crystal structure, with a gelatinization temperature of 71.8 ± 0.2 °C. The overlap concentration (C*) of AS in aqueous solutions was 0.42% (w/v). Temperature-dependent dynamic rheological analyses of 10% to 30% (w/v) AS fluids showed that the storage modulus (G’) reached the maximum values around the gelatinization temperatures, while the yield stress (τy) and flow stress (τf) values all increased with the increase in AS concentration. The printing accuracy of AS gels was found to be associated with the interplay between the G’ values and the restorability after extrusion, determined by the three-interval thixotropy tests (3ITT). The optimum 3D printing condition occurred at 20% (w/v) AS, the nozzle diameter of 0.60 mm, the printing speed of 100 mm/s and the extrusion speed of 100 mm/s. Our research provides a promising biopolymer to be used in the design of novel personalized functional foods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods11142140 |