Reconnection and Energetics in Two-ribbon Flares: A Revisit of the Bastille-day Flare

We conduct a semi-quantitative analysis of two-ribbon flares to investigate the observational relationship between magnetic reconnection and energetics by revisiting the Bastille-day flare, particularly the UV and hard X-ray (HXR) observations. The analysis establishes that prominent UV emission is...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal Vol. 725; no. 1; pp. 319 - 330
Main Authors: Qiu, Jiong, Liu, WenJuan, Hill, Nicholas, Kazachenko, Maria
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 10-12-2010
IOP
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We conduct a semi-quantitative analysis of two-ribbon flares to investigate the observational relationship between magnetic reconnection and energetics by revisiting the Bastille-day flare, particularly the UV and hard X-ray (HXR) observations. The analysis establishes that prominent UV emission is primarily produced by precipitating electrons that also produce HXRs. In addition, reconnection and subsequent energy release along adjacent field lines along the polarity inversion line (PIL) combined with elongated decay of UV emission may account for the observed extended UV ribbons whereas HXR sources with rapid decay appear mostly as compact kernels. Observations also show that HXR sources and UV brightenings exhibit an organized parallel motion along the magnetic PIL during the rise of the flare, and then the perpendicular expansion of UV ribbons dominate during the peak. With a 2.5 dimensional approximation with the assumed translational dimension along the PIL, we derive geometric properties of UV ribbons and infer the pattern of reconnection as with a varying magnetic guide field during reconnection. It is shown that HXR and UV emissions evolve in a similar way to reconnection rates determined by the perpendicular 'motion.' The analysis suggests that a relatively strong guide field may be present during the rise of the flare, whereas particle acceleration and non-thermal energy release are probably more efficient with an enhanced reconnection rate with a relatively weak guide field. We discuss the role of the guide field in reconnection and particle energization, as well as novel observational experiments that may be conducted to shed new light on these issues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/725/1/319