Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release

Previously, we reported that red blood cells (RBCs) of rabbits and humans release ATP in response to mechanical deformation and that this release of ATP requires the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). It was reported that cAMP, acting through a cAMP-dependent...

Full description

Saved in:
Bibliographic Details
Published in:American Journal of Physiology: Cell Physiology Vol. 281; no. 4; p. C1158
Main Authors: Sprague, R S, Ellsworth, M L, Stephenson, A H, Lonigro, A J
Format: Journal Article
Language:English
Published: United States 01-10-2001
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previously, we reported that red blood cells (RBCs) of rabbits and humans release ATP in response to mechanical deformation and that this release of ATP requires the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). It was reported that cAMP, acting through a cAMP-dependent protein kinase, PKA, is an activator of CFTR. Here we investigate the hypothesis that cAMP stimulates ATP release from RBCs. Incubation of human and rabbit RBCs with the direct activator of adenylyl cyclase, forskolin (10 or 100 microM), with IBMX (100 microM), resulted in ATP release and increases in intracellular cAMP. In addition, epinephrine (1 microM), a receptor-mediated activator of adenylyl cyclase, stimulated ATP release from rabbit RBCs. Moreover, incubation of human and rabbit RBCs with an active cAMP analog [adenosine 3'5'-cyclic monophosphorothioate Sp-isomer (Sp-cAMP, 100 microM)] resulted in ATP release. In contrast, forskolin and Sp-cAMP were without effect on dog RBCs, cells known not to release ATP in response to deformation. When rabbit RBCs were incubated with the inactive cAMP analog and inhibitor of PKA activity, adenosine 3',5'-cyclic monophosphorothioate Rp-isomer (100 microM), deformation-induced ATP release was attenuated. These results are consistent with the hypothesis that adenylyl cyclase and cAMP are components of a signal-transduction pathway relating RBC deformation to ATP release from human and rabbit RBCs.
ISSN:0363-6143
DOI:10.1152/ajpcell.2001.281.4.c1158