Development, Validation and Pilot Field Deployment of a Custom Mouthpiece for Head Impact Measurement

The objective of this study was to develop a mouthpiece sensor with improved head kinematic measurement for use in non-helmeted and helmeted sports through laboratory validation and pilot field deployment in female youth soccer. For laboratory validation, data from the mouthpiece sensor was compared...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering Vol. 47; no. 10; pp. 2109 - 2121
Main Authors: Rich, Andrea M., Filben, Tanner M., Miller, Logan E., Tomblin, Brian T., Van Gorkom, Aaron R., Hurst, Michael A., Barnard, Ryan T., Kohn, Dena S., Urban, Jillian E., Stitzel, Joel D.
Format: Journal Article
Language:English
Published: New York Springer US 01-10-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to develop a mouthpiece sensor with improved head kinematic measurement for use in non-helmeted and helmeted sports through laboratory validation and pilot field deployment in female youth soccer. For laboratory validation, data from the mouthpiece sensor was compared to standard sensors mounted in a headform at the center of gravity as the headform was struck with a swinging pendulum. Linear regression between peak kinematics measured from the mouthpiece and headform showed strong correlation, with r 2 values of 0.95 (slope = 1.02) for linear acceleration, 1.00 (slope = 1.00) for angular velocity, and 0.97 (slope = 0.96) for angular acceleration. In field deployment, mouthpiece data were collected from four female youth soccer players and time-synchronized with film. Film-verified events ( n = 915) were observed over 9 practices and 5 games, and 632 were matched to a corresponding mouthpiece event. This resulted in an overall sensitivity of 69.2% and a positive predictive value of 80.3%. This validation and pilot field deployment data demonstrates that the mouthpiece provides highly accurate measurement of on-field head impact data that can be used to further study the effects of impact exposure in both helmeted and non-helmeted sports.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-019-02313-1