Albumin Stabilized Fe@C Core–Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy
Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation–condensation flow–levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Vol. 12; no. 16; p. 2869 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-08-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation–condensation flow–levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12162869 |