Immunohistochemical detection of angiotensin II receptors in mouse cerebellum and adrenal gland using “in vivo cryotechnique”
Angiotensin II (AT) receptors, including AT receptor type 1 (AT1R) and type 2 (AT2R), are expressed in the rodent central nervous system, but their distributions and activation states are still unclear. In this study, we have performed immunohistochemical analyses of AT receptors in mouse cerebellum...
Saved in:
Published in: | Histochemistry and cell biology Vol. 140; no. 4; pp. 477 - 490 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-10-2013
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Angiotensin II (AT) receptors, including AT receptor type 1 (AT1R) and type 2 (AT2R), are expressed in the rodent central nervous system, but their distributions and activation states are still unclear. In this study, we have performed immunohistochemical analyses of AT receptors in mouse cerebellum and adrenal gland using our “in vivo cryotechnique” (IVCT). We used antibodies against amino-terminal domains of AT receptors, which are considered to undergo conformational changes upon the binding of AT. Immunoreactivity of AT1R was detected in mouse cerebellum, and was highest in the outer tissue areas of molecular layers using IVCT. The AT1R immunostaining largely overlapped with glial fibrillary acidic protein (GFAP), a marker of Bergmann glia. Surprisingly, the AT1R immunoreactivity in the cerebellar cortex was remarkably reduced following 5 and 10 min of hypoxia or direct administration of an AT1R antagonist, losartan. By contrast, in the adrenal cortex, such AT1R immunoreactivity detected at the zona glomerulosa did not change even after 15 min of hypoxia. The correlation of localization with GFAP and also hypoxia-induced decrease of its immunoreactivity were similarly observed by immunostaining of AT2R in the cerebellar specimens. These findings demonstrated that IVCT is useful to reveal dynamically changing immunoreactivities usually affected by receptor-ligand binding as well as hypoxia, and also suggested that functional activities of AT receptors are time-dependently modulated under hypoxia in the central nervous system in comparison with the adrenal glands. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0948-6143 1432-119X |
DOI: | 10.1007/s00418-013-1084-y |