Changes in plant species composition of coastal dune habitats over a 20-year period
Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity and habitat degradation. Using phytosociological relevés we conducted a re-visitation study in order to analyse changes in floristic composition during the last twenty years along the central A...
Saved in:
Published in: | AoB plants Vol. 7 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
01-01-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity and habitat degradation. Using phytosociological relevés we conducted a re-visitation study in order to analyse changes in floristic composition during the last twenty years along the central Adriatic coast. We observed a significant increase in cover of fore dune and thermophilic species. Even though human activities are major driving forces of change in coastal dune vegetation, the species' cover increase may also be due to a moderate increment in average yearly temperature over the last two decades.
Abstract
Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity, habitat degradation and landscape modifications. However, there are still very few detailed studies focussing on compositional changes in coastal dune plant communities over time. In this work, we investigated how coastal dune European Union (EU) habitats (from pioneer annual beach communities to Mediterranean scrubs on the landward fixed dunes) have changed during the last 20 years. Using phytosociological relevés conducted in 1989–90 and in 2010–12, we investigated changes in floristic composition over time. We then compared plant cover and the proportion of ruderal, alien and habitat diagnostic species (‘focal species’) in the two periods. Finally, we used Ellenberg indicator values to define the ‘preferences’ of the plant species for temperature and moisture. We found that only fore dune habitats showed significant differences in species cover between the two time periods, with higher plant cover in the more recent relevés and a significant increase in thermophilic species. Although previous studies have demonstrated consistent habitat loss in this area, we observed that all coastal dune plant communities remain well represented, after a 20-year period. However, fore dunes have been experiencing significant compositional changes. Although we cannot confirm whether the observed changes are strictly related to climatic changes, to human pressure or to both, we hypothesize that a moderate increment in average yearly temperature may have promoted the increase in plant cover and the spread of thermophilic species. Thus, even though human activities are major driving forces of change in coastal dune vegetation, at the community scale climatic factors may also play important roles. Our study draws on re-visitation studies which appear to constitute a powerful tool for the assessment of the conservation status of EU habitats. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Associate Editor: Dennis F. Whigham |
ISSN: | 2041-2851 2041-2851 |
DOI: | 10.1093/aobpla/plv018 |