Nano-structure of vitronectin/heparin on cell membrane for stimulating single cell in iPSC-derived embryoid body
Individual cell environment stimulating single cell is a suitable strategy for the generation of sophisticated multicellular aggregates with localized biochemical signaling. However, such strategy for induced pluripotent stem cell (iPSC)-derived embryoid bodies (EBs) is limited because the presence...
Saved in:
Published in: | iScience Vol. 24; no. 4; p. 102297 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
23-04-2021
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Individual cell environment stimulating single cell is a suitable strategy for the generation of sophisticated multicellular aggregates with localized biochemical signaling. However, such strategy for induced pluripotent stem cell (iPSC)-derived embryoid bodies (EBs) is limited because the presence of external stimulation can inhibit spontaneous cellular communication, resulting in misdirection in the maturation and differentiation of EBs. In this study, a facile method of engineering the iPSC membrane to stimulate the inner cell of EBs while maintaining cellular activities is reported. We coated the iPSC surface with nanoscale extracellular matrix fabricated by self-assembly between vitronectin and heparin. This nano-coating allowed iPSC to retain its in vitro properties including adhesion capability, proliferation, and pluripotency during its aggregation. More importantly, the nano-coating did not induce lineage-specific differentiation but increased E-cadherin expression, resulting in promotion of development of EB. This study provides a foundation for future production of sophisticated patient-specific multicellular aggregates by modification of living cell membranes.
[Display omitted]
•VTN/HEP nano-coating acts as a flexible individual cellular environment•VTN/HEP nano-coating stimulates embryoid body to promote its development•VTN/HEP nano-coating preserves spontaneous cell aggregation |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2021.102297 |