Anti-aging effects of chlorpropamide depend on mitochondrial complex-II and the production of mitochondrial reactive oxygen species
Sulfonylureas are widely used oral anti-diabetic drugs. However, its long-term usage effects on patients’ lifespan remain controversial, with no reports of influence on animal longevity. Hence, the anti-aging effects of chlorpropamide along with glimepiride, glibenclamide, and tolbutamide were studi...
Saved in:
Published in: | Acta pharmaceutica Sinica. B Vol. 12; no. 2; pp. 665 - 677 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-02-2022
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sulfonylureas are widely used oral anti-diabetic drugs. However, its long-term usage effects on patients’ lifespan remain controversial, with no reports of influence on animal longevity. Hence, the anti-aging effects of chlorpropamide along with glimepiride, glibenclamide, and tolbutamide were studied with special emphasis on the interaction of chlorpropamide with mitochondrial ATP-sensitive K+ (mitoK-ATP) channels and mitochondrial complex II. Chlorpropamide delayed aging in Caenorhabditis elegans, human lung fibroblast MRC-5 cells and reduced doxorubicin-induced senescence in both MRC-5 cells and mice. In addition, the mitochondrial membrane potential and ATP levels were significantly increased in chlorpropamide-treated worms, which is consistent with the function of its reported targets, mitoK-ATP channels. Increased levels of mitochondrial reactive oxygen species (mtROS) were observed in chlorpropamide-treated worms. Moreover, the lifespan extension by chlorpropamide required complex II and increased mtROS levels, indicating that chlorpropamide acts on complex II directly or indirectly via mitoK-ATP to increase the production of mtROS as a pro-longevity signal. This study provides mechanistic insight into the anti-aging effects of sulfonylureas in C. elegans.
Chlorpropamide delayed aging in Caenorhabditis elegans, MRC-5 cells and doxorubicin-induced aging mice. It acts on complex II directly or indirectly via mitoK-ATP to produce mtROS as a pro-longevity signal. [Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors made equal contributions to this work. |
ISSN: | 2211-3835 2211-3843 |
DOI: | 10.1016/j.apsb.2021.08.007 |