Identification of SARS-CoV-2 S RBD escape mutants using yeast screening and deep mutational scanning
Here, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for...
Saved in:
Published in: | STAR protocols Vol. 2; no. 4; p. 100869 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
17-12-2021
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for monoclonal antibodies that directly compete with angiotensin-converting enzyme 2 for binding. Six to 10 antibodies can be assessed in parallel. This approach has been shown to determine escape mutants that are consistent with more laborious SARS-CoV-2 pseudoneutralization assays.
For complete details on the use and execution of this protocol, please refer to Francino-Urdaniz et al. (2021).
[Display omitted]
•A protocol for identifying S escape mutations for anti-S monoclonal antibodies•All anti-S antibodies that competitively inhibit ACE2 can be tested•Protocol uses yeast display screening of freely available S RBD libraries•Open-source software used to analyze sequencing data and identify escape mutants
Here, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for monoclonal antibodies that directly compete with angiotensin-converting enzyme 2 for binding. Six to 10 antibodies can be assessed in parallel. This approach has been shown to determine escape mutants that are consistent with more laborious SARS-CoV-2 pseudoneutralization assays. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Technical contact These authors contributed equally Lead contact |
ISSN: | 2666-1667 2666-1667 |
DOI: | 10.1016/j.xpro.2021.100869 |