The SNO-proteome: causation and classifications
Cell signaling is a complex and highly regulated process. Post-translational modifications of proteins serve to sense and transduce cellular signals in a precisely coordinated manner. It is increasingly recognized that protein S-nitrosylation, the addition of a nitric oxide group to cysteine thiols,...
Saved in:
Published in: | Current opinion in chemical biology Vol. 15; no. 1; pp. 129 - 136 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-02-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell signaling is a complex and highly regulated process. Post-translational modifications of proteins serve to sense and transduce cellular signals in a precisely coordinated manner. It is increasingly recognized that protein S-nitrosylation, the addition of a nitric oxide group to cysteine thiols, serves an important role in a wide range of signaling pathways. In spite of the large number of SNO-proteins now identified (∼1000), the observed specificity of S-nitrosylation in terms of target proteins and specific cysteines within modified proteins is incompletely understood. Here we review the progress made in S-nitrosylation detection methods that have facilitated the study of the SNO-proteome under physiological and pathophysiological conditions, and some factors important in determining the SNO-proteome. Classification schemes for emergent denitrosylases and prospective ‘protein S-nitrosylases’ are provided. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 |
ISSN: | 1367-5931 1879-0402 |
DOI: | 10.1016/j.cbpa.2010.10.012 |