Identification of a Developmental Chemoattractant in Myxococcus xanthus through Metabolic Engineering

Fruiting body formation of Myxococcus xanthus requires the ordered migration of tens of thousands of cells by using a form of surface motility known as gliding and chemical signal(s) that have yet to be elucidated. Directed movement is regulated by phosphatidylethanolamine (PE) purified from M. xant...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 98; no. 24; pp. 13990 - 13994
Main Authors: Kearns, Daniel B., Venot, Andre, Bonner, Pamela J., Stevens, Brian, Boons, Geert-Jan, Shimkets, Lawrence J.
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 20-11-2001
National Acad Sciences
The National Academy of Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fruiting body formation of Myxococcus xanthus requires the ordered migration of tens of thousands of cells by using a form of surface motility known as gliding and chemical signal(s) that have yet to be elucidated. Directed movement is regulated by phosphatidylethanolamine (PE) purified from M. xanthus cell membranes. Because the purified PE preparation contains a remarkably diverse mixture of fatty acids, metabolic engineering was used to elucidate the biologically active fatty acid component. The mutational block in an esg mutant, which renders it defective in producing primers for branched-chain fatty acid biosynthesis, was bypassed with one of a series of primers that enriches for a particular family of branched-chain fatty acids. Each PE enrichment was observed for chemotactic activity by using an excitation assay and for fatty acid content. The excitation activity of a PE preparation was generally proportional with the concentration of the fatty acid 16:1ω5c. 1,2-O-Bis[11-(Z)-hexadecenoyl]-sn-glycero-3-phosphoethanolamine (PE-16: 1ω5c/16:1ω5c) was synthesized and elicited an excitation peak at 2 ng. This peak activity occurred at a 1,000-fold lower concentration than dilauroyl PE (PE- 12:0/12:0) and the peak magnitude was 2-fold higher. PE containing 16:1ω5c is likely to play a role in development because it is active at physiological concentrations and only under developmental conditions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom reprint requests should be addressed. E-mail: shimkets@arches.uga.edu.
Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138.
Edited by A. Dale Kaiser, Stanford University School of Medicine, Stanford, CA, and approved October 1, 2001
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.251484598